Future Energy System Conference April 10, 2019, Troy, NY

High Energy Aqueous Li-ion Batteries

Kang Xu

Electrochemistry Branch
Sensor and Electron Devices Directorate
CCDC U. S. Army Research Laboratory

(taken for Galaxy M87, 55 Mln-Lys away) 9:00 AM, April 10, 2019

Li-ion Battery: 1990

Thermodynamic non-equilibria

- Reversibility enabled by kinetic protection from interphases
 - SEI on anode
- Interphase universally exists in any advanced electrochemical systems

The success of LIB

"Among the top 50 disruptive technologies, LIB is predicted to be of the highest volume and impact..."

Source: Forrester & Sullivan, 2014

It changed our life!

The expansion of LIB

10^{3~4} Wh

10² Wh

DEVEDM The primary challenge of LIB

Safety: Primary challenges of SOA LIB

iMac Fire, 2005

Non-aqueous electrolytes held responsible ...

- Intrinsic Flammability: non-aqueous electrolytes
 - Flash points of most carbonates are below 0 °C
 - Acting as fuel when thermal run-away

The Safety Measures

On system level

- Battery management system (BMS)
- Phase change medium
 - Cost, dead-weight

On materials level

- Non-flammable electrolytes
 - Compromise in energy and power densities
 - May not work in thermal runaway
 - Separator still reacts with cathodes
- Separator
 - Cost, effectiveness
- Safe cathode
 - Metal phosphate of olivine structure
 - Compromise in energy & power densities

Can we use water?

- Highly polar: ε 78 at RT
 - One of the strongest solvents known
- Non-flammable and green

Replacing carbonate esters with water

- The most universal on the planet and a very excellent solvent
- Resolving flammability and environmental concerns

However, the electrochemical stability window of water < 1.5 V

1.23 V thermodynamically stable

Scientific challenge: Expanding the electrochemical window

How LIB works at Non-equilibrium

Can we form SEI in aqueous electrolytes?

How SEI was formed

Li+-Solvation a key factor

- Main chemical contribution comes from solvent molecules in primary sphere
- Solvent decomposition products constitutes SEI

This clearly does not apply to WATER!

We need to change the solvation structure of Li⁺ (or other M⁺)

SEI in Water

Super-concentration alters solvation structure

LiTFSI in H₂O

Water-in-Salt Electrolytes (WiSE)

Diluted (< 5 m)

Super-concentrated (~ 20 m)

We rely on anion to form SEI in water

- Water is stabilized by strong ion-solvent interaction
- Ion-solvation sheath structure
- Insoluble products in water: LiF, Li₂O, Li₂CO₃
- Reduction potential of anion

Li₄Mo₆S₆

20 30 40

Electrodes capacity (m/h/g)

2nd

Aq. SEI Formation Mechanism

- **TFSI** reduction; LiF nucleation
- Li₂CO₃ and Li₂O form

10 20 30 40

Capacity (mAh/g)

Hybrid Electrolytes

Hybrid Aqueous/Non-aqueous Electrolyte (HANE)

- Use a non-aqueous component to resolve the "Cathodic Challenge"
- Introducing a third component to disrupt the inner-Helmholtz layer structure

- The Non-aqueous components helps repels water via preferential adsorption till < 1.5 V
- The non-aqueous also provides the necessary SEI component

4.0 V Aqueous LIBs

Pre-formation assembly at inner-Helmholtz layer

- Anion repelled, water preferred <1.5 V
- "Cheating" the cathodic challenge
- An artificial SEI-precursor had to be used

A >4.0 V window realized

- LIB full cells in "Water-in-Bisalt" GPE can deliver an average output voltage of >4.0 V;
- ED 278~300 Wh/kg
- SEI formation at anode enables nearly 1st stage LiGIC (>300 mAh/g)
- Cycle-life still needs improvement

Yang et al, Joule, 2017

"Stabilized Water"

High tolerance against mechanical abuses

CONCLUSIONS

- Interphase holds the key to enabling extreme battery chemistries
- Aqueous chemistries will lead us in a new direction seeking new battery chemistries

Acknowledgement

DOE BES, ARPA-E

Your attention!

conrad.k.xu.civ@mail.mil kang_xu@hotmail.com

Chongyin Yang (UMD)

