Taking the Duck out of Water

CSP Innovations for a Green Landscape

Shaun D. Sullivan, Class of ‘98
Principal Engineer,
R&D Program Manager
BraytonEnergy
sullivan@braytonenergy.com
Outline

• Introduction to Brayton
• CSP Overview and its Global Market
• Energy Storage
 ◦ The Duck Curve
 ◦ The Promise/Heartbreak of Batteries
 ◦ CSP with Storage: Emerging Tech
 – Thermal Energy Storage
 – Integration
 – Receivers
 ▪ Solar Field Advancements
 – Heat Exchangers
 – Material Advancements
 – Thermal Flow Batteries
• Summary
Turbomachinery
• Microturbines
• Dist. Generation
• Hybrid Vehicles
• UAV/Aero Engines
• Supercritical CO₂

Compact Heat Exchangers
• Gas Turbine Recuperators
• Nuclear Applications
• High Performance
• High Temp., Press.

Renewables
• Concentrating Solar
• Energy Storage
• Biomass Utilization

... an innovative R&D firm dedicated to making meaningful contributions in the field of environmentally responsible, sustainable energy production
Concentrating Solar Power (CSP)

• Directly generate heat (as opposed to electricity) from solar insolation
 ◦ Can be used in place of fuel to generate power/electricity via e.g. steam turbines
 ◦ Heat can be stored at low cost and with relative ease
 ◦ Overall higher solar collection area-to-electric conversion efficiencies are possible
 - 25-30% overall
 ▪ 75% field efficiency
 ▪ 85% receiver efficiency
 ▪ 95% storage efficiency
 ▪ 40% cycle efficiency
Global CSP Market (Currently 5 GW)

http://www.nrel.gov/csp/solarpaces/
The Duck Curve

• Graph shows the power demand after solar energy is provided
 ◦ As more solar capacity comes online during the day, the power required by other source diminishes
Supply and Demand

April 1st, 2018

Demand

Surplus (stored)

Dispatch
Department of Energy SunShot LCOE Targets

- PV (below): 3-4 ¢/kWh_e
- CSP (right): 5-10 ¢/kWh_e...
 - ... w/ 4-6 hours of storage

*Levelized cost of electricity (LCOE) progress and targets are calculated based on average U.S. climate and without the ITC or state/local incentives. The residential and commercial goals have been adjusted for inflation from 2010-17.
The Promise and Heartbreak of Batteries

- Current prices range from $380 (for 4 hours) to $900 (for 0.5 hours) per kWh_e
 - Extrapolations indicate 2030 prices in the $120-150 per kWh_e range

- Uncertain extended storage (>2-4 hours) solutions

- Heavy metals

- Limited life (7 years?)

- Current targets for thermal energy storage are $33 to $63 per kWh_e
 - The value in CSP – up to 15 GW/year by 2030 – is in its potential for inexpensive energy storage and dispatch
Energy Storage Capacity

For storage conditions corresponding to the nominal 10-MW_e DoE-funded Supercritical Transformational Engine Program (STEP)
Energy Storage Programs

<table>
<thead>
<tr>
<th>CONFIGURATION</th>
<th>TROUGH</th>
<th>DISH</th>
<th>TOWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORAGE \ CYCLE</td>
<td>Steam</td>
<td>Air</td>
<td>Steam</td>
</tr>
<tr>
<td>None</td>
<td></td>
<td>DoE Solar America</td>
<td>Commercial Partnership</td>
</tr>
<tr>
<td>Compressed Air</td>
<td></td>
<td>DoE Solar America</td>
<td></td>
</tr>
<tr>
<td>Molten Salt</td>
<td>DoE SunShot</td>
<td>Commercial Partnership</td>
<td>Commercial Partnership*</td>
</tr>
<tr>
<td>Solid Particle</td>
<td></td>
<td></td>
<td>DoE Gen3 Topic 1</td>
</tr>
<tr>
<td>Phase Change</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermo-Chemical</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thermochemical Energy Storage: Metal Hydrides

• A well-chosen pairing of metal hydrides will enable the free flow of H$_2$ between the two media at the desired temperatures.

• Connecting pipes must be sized for the appropriate pressure drop to maintain intended operating temps.
1. RCBC sCO₂ power block
 ◦ nominally the STEP engine
2. Low temp. (~570 °C) piping
3. Low temp. (~570 °C) valves (x2)
4. 27.0 MWₜ open receiver
5. High Temp (~760 °C) piping
6. 5.5 MWₜ HTMH TES HEX (x3)
7. 5.5 MWt cavity receiver (x2)
8. Hydrogen (~720 °C) transport pipe
9. Regenerator
10. ~3 MWₜ LTMH TES HEX
Receivers for sCO$_2$ (750 °C, 25 MPa)

- Fully-welded pressure boundary ensures sealing
- Individually tested for quality control
- Braided fins react high internal pressures by acting as tensile support members
- Small hydraulic diameters, densely-packed fins, and thin walls enhance heat transfer
- Customizable fin geometry
Multiple-Aimpoint + Flux Control

Program leverages Gen3 advancements in heliostat control to expand system capabilities

- Multi-receiver targeting
 - Closest heliostats are allocated to cavity receivers
 - Reduced spillage
 - Small apertures

- Flux Profiling
 - Aligns peak fluxes in open receiver with coldest fluid
sCO$_2$ Heat Exchangers

- Broad application across emerging sCO$_2$ systems

Low-cost modular panel solar receivers for high-efficiency engine configurations

Low-cost compact high-temperature heat exchangers and recuperators for high-efficiency power cycles

Low-cost compact high-temperature working fluid (sCO$_2$) to molten salt heat exchangers
Energy Storage Heat Exchangers

• Enables efficiency usage of all TES media
 ◦ High-effectiveness design provides large heat transfer area
 ◦ Promotes linear temperature gradients

HTF flows within internally-supported and heat-transfer enhanced cells

TC or PCM media is packed within inter-cell spaces
Falling Particle Receivers

- Directly irradiates a flow of solid particles
 - *Particles used as absorber and storage medium*
New Materials: Inconel 740H

- High strength at high temperature
 - Developed for supercritical steam applications
Thermal Batteries \((\eta_{\text{round trip}} > 50\%) \)

- Use the temperature difference between hot and cold tanks to drive a Brayton Cycle and generate electricity

- Excess power from the grid runs the engine in reverse; expansion across the cold turbine recharges the cold tank, and compression across the hot compressor recharges the hot tank
Summary

• Adoption of CSP has historically been cost-challenged
 ◦ The evolving power and climate landscape emphasizes *storage*, which CSP accomplishes through low-cost heat retention
 – The primary alternative – batteries - are currently ~10-20x more expensive on a capacity basis, and limited to short-duration storage applications

• Growing demand for [Solar + Storage] has generated significant research investment in CSP development
 ◦ Multiple pathways towards commercially-viable designs are emerging, and technological advances have been rapid

• Traditional economic evaluation has been via LCOE
 ◦ Evolving to a PPA understanding, which enables systems that operate profitably by dispatching only during high-value periods
Thank you for your attention