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* Introduction to Brayton
e CSP Overview and its Global Market
* Energy Storage
o The Duck Curve
o The Promise/Heartbreak of Batteries

o CSP with Storage: Emerging Tech
— Thermal Energy Storage
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— Receivers
= Solar Field Advancements

- Heat Exchangers
— Material Advancements
— Thermal Flow Batteries

* Summary
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am '.‘_l__ ... an innovative R&D firm dedicated to making meaningful
contributions in the field of environmentally

’(r Brcy.l.on En@[rgy responsible, sustainable energy production

Turbomachinery Compact Heat Exchangers

* Microturbines * Gas Turbine Recuperators

* Dist. Generation * Nuclear Applications

* Hybrid Vehicles * High Performance “Valley of Death”

* UAV/Aero Engines * High Temp., Press.
* Supercritical CO,
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Renewables
Combustor Design * Concentrating Solar
e Multi-Fuel * Energy Storage

e Ultra Low Emissions ¢ Biomass Utilization
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Concentrating Solar Power (CSP)

* Directly generate heat (as opposed
to electricity) from solar insolation

o Can be used in place of fuel to
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Global CSP Market (Currently 5 GW)

USA -3218 MW

16%
44%
40%

Mexico - 14 MW
@

100%

EUROPE - 226 MW

2%
Spain - 2354 MW |
12%

87%
MENA - 865 MW
20%

60% .20%

Chile - 760 MW
South Africa - 500 MW
100%
. 30%
Argentina - 20 MW 70%
100%
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i iNREL

NATIONAL RENEWABLE ENERGY LABORATORY
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http://www.nrel.gov/csp/solarpaces/

M OPERATIONAL  m UNDER CONSTRUCTION DEVELOPMENT

China -456 MW

12%
India - 497.5 MW
10% 88%
90% Thailand - 14 MW
‘ 36%
64%

Australia - 53 MW
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The Duck Curve

Net load - March 31 ° Graph shows the
power demand after
solar energy is provided

o As more solar capacity
comes online during
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Supply and Demand

April 1%, 2018
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Department of Energy SunShot LCOE Targets

“Levelized cost of electricity (LCOE) progress and targets are calculated based on average U.S. climate and without
the ITC or state/local incentives. The residential and commercial goals have been adjusted for inflation from 2010-17.
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The Promise and Heartbreak of Batteries

* Current prices range from $380 (for 4 hours) to $900 (for 0.5 hours) per kWh,
o Extrapolations indicate 2030 prices in the $120-150 per kWh, range

° I ]
U ncertain Energy Storage Cost Model Results NEW ENERGY :'
extended OUTLOOK 2016 =
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Energy storage cost ($/kWh) = battery cost ($/kWh) + other cost components ($) +
Storage System Size (kw) = dul'aﬁOn (hoUrs). Source: Bloomberg New Energy Finance Note: these figures are different than those forecast in our 2015 EV battery price Bloomberg

outlook. We have updated our forecast battery demand growth figures, which impacts cost.

* Current targets for thermal energy storage are 533 to 563 per kWh,

o The value in CSP — up to 15 GW/year by 2030 — is in its potential for inexpensive energy
storage and dispatch



Energy Storage Capacity
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7rBraytonEnergy Energy Storage Programs

CONFIGURATION | TROUGH m
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Thermochemical Energy Storage: Metal Hydrides

* A well-chosen pairing of
metal hydrides will enable

t
t

ne free flow of H, between
ne two media at the

C

esired temperatures.

* Connecting pipes must be
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sized for the appropriate
pressure drop to maintain
intended operating temps.

Media Pressure (MPa)

2.6
24
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6

LTMH

Discharging

H, Flow

HTMH

Charging

0

100

200

300 400 500
Media Temperature (°C)

600 700

800




-\ "_

7rBraytonEnergy

Integrated System Layout

1. RCBCsCO, power block
o nominally the STEP engine

Low temp. (~ 570 °C) piping
Low temp. (~ 570 °C) valves (x2)

27.0 MW, open receiver

High Temp (~ 760 °C) piping
5.5 MW, HTMH TES HEX (x3)
5.5 MWt cavity receiver (x2)

Hydrogen (~720 °C) transport pipe

O 0 N O Uk WN

Regenerator
10. ~3 MW, LTMH TES HEX
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Receivers for sCO, (750 °C, 25 MPa)

Fully-welded pressure
boundary ensures sealing

Individually
tested for
quality control

Brazed fins react high internal
- | pressures by acting as tensile
- | support members

Small hydraulic diameters, densely-pagked : .
fins, and thin walls enhance heat transfer Customizable
: SR fin geometry

i
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Multiple-Aimpoint + Flux Control i iNREL

Program leverages Gen3
advancements in heliostat
control to expand system
capabilities

-
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NATIONAL RENEWABLE ENERGY LABORATORY

Multi-receiver targeting

Closest heliostats are
allocated to cavity receivers
Reduced spillage
Small apertures

100

Flux Profiling
Aligns peak
fluxes in open
receiver with
coldest fluid
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Power Plant

= Thermal Storage

m Solar Field
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sCO, Heat Exchangers

* Broad application
across emerging
sCO, systems

Low-cost modular panel solar

receivers for high-efficiency engine
configurations

Low-cost compact high-temperature
heat exchangers and recuperators
for high-efficiency power cycles

Low-cost compact high-temperature
working fluid (sCO,) to molten salt
heat exchangers

Production Cost vs. Production

CAPEX: $one-time (Stotal)
Tooling: Sone-time ($total)

Cost, Normalized ($/kWth)
B g2
8

CAPEX: $100k

Tﬂnllng $90k + $25k CAPEX $215k ($315k)
3.0 MW yr Tooling: $115k ($240K)
e v
-~ Tooll +515k
Phase2 ™~ =
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——Pilot Production T~ %
<Unit 1 Production Phased Test
Production Scaﬂng Facllity Unit (1.5 MW;)

Factory capacity

GAPEX: $1.6M ($1.9M)
Tooling: $450k ($770K)
44 MWy

1 x 10 MW,
Full-Scale
Integrated

System

100 1,000
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Energy Storage Heat Exchangers

* Enables efficiency
usage of all TES media

o High-effectiveness
design provides large
heat transfer area

o Promotes linear
temperature gradients

HTF flows within
internally-
supported and
heat-transfer
enhanced cells

*zrBraytonEnergy

-\ "_

—"TC or PCM media is packed
within inter-cell spaces
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Laboratories

o o . Sandi
Falling Particle Receivers @N?.?m'ﬁm

* Directly irradiates a flow of solid particles
o Particles used as absorber and storage medium

Particle elevator Particle curtain

Particle hot
storage tank

Particle-to-
working-fluid heat
exchanger

Particle cold
storage tank

Falling particle receiver
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SPECIAL

New Materials: Inconel 740H METALS

* High strength at high temperature
o Developed for supercritical steam applications

Average Temperature for Rupture in 100,000 hours (°F) \
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Thermal Batteries (7.....>5%) Google:” AALTA

e Use the temperature difference between hot * Excess power from the grid runs the engine in
and cold tanks to drive a Brayton Cycle and reverse; expansion across the cold turbine
generate electricity recharges the cold tank, and compression across

the hot compressor recharges the hot tank

G !
o
CHARGE

A
= =

GENERATE /4

a

@ W -©

a

@ W—©

7rBraytonEnergy

-\ "t_



*zrBraytonEnergy

-\ '.‘

Summary

» Adoption of CSP has historically been cost-challenged

o The evolving power and climate landscape emphasizes storage, which CSP

accomplishes through low-cost heat retention

- The primary alternative — batteries - are currently ~10-20x more expensive on a capacity

basis, and limited to short-duration storage applications

* Growing demand for [Solar + Storage] has generated

significant research investment in CSP development

o Multiple pathways towards commercially-viable
designs are emerging, and technological advances
have been rapid

e Traditional economic evaluation has been via LCOE

o Evolving to a PPA understanding, which enables ::

systems that operate profitably by dispatching
only during high-value periods
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Thank you for your attention

Shaun D. Sullivan
Principal Engineer,

14 R&D Program Manager
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