Microgrid Fundamentals and Control

Jian Sun, Professor and Director
New York State Center for Future Energy Systems
jsun@rpi.edu; (518) 276-8297
Microgrid is not New

• Early Power Systems Developed by Thomas Edison and Nikola Tesla were all “Microgrids”
• Large Power Grids Emerged Because of Improved Reliability, Better Generation-Load Balance, and More Stable Voltage & Frequency
• AC Took Over DC due to Easy Conversion
Why Microgrids Again

• New Drivers
 – Utilization of Distributed Generation
 • Renewable Energy, CHP, Energy Storage
 • Reduce Transmission and Distribution Cost & Losses
 – Improve Grid Resiliency and Power Quality
 – Expansion of Electrification

• New Enabling Technologies
 – Power Electronics, Communication, Control
 – Cost-Effective and Efficient Energy Storage
Microgrid Technology

• Many Conferences, Workshops & Seminars about Microgrid Deployment, Benefits & Market
• Technical Materials have been Limited to Specific Techniques for “Specialists”
• Lack of Basic Understanding Often Leads to Hypes, False Claims/Expectations, and Mysteries
• Functionality is Easy; Performance is the Key
 – Promise Performance, Deliver Functionality
This Webinar

• Covers the Fundamentals of Microgrid
 – Technology, with a Focus on Control
 – Performance, with a Focus on Power Quality
• Targets Audience with General EE Background
• Goals
 – Users: Ask the Right Questions
 – Design Engineers: Know Where to Start
 – Research Engineers: Understand Technical Challenges and Opportunities for Innovation
Power Sharing

- Microgrid Control is about Sharing Power Among Multiple Sources While Maintaining Stability
Control Hierarchies

Microgrid 1

- Primary Control
- Inner Control
- Loads

Secondary & Tertiary Control

Primary Control

Inner Control

Power Grid

- Tertiary Control (Grid Interface)
- Secondary Control (EMS)

Communication

50/60 Hz

Jian Sun 10-17-2014
General Considerations

• Inner and Primary Control are Local
• Secondary and Tertiary Control are Central
 – Require Communications
 – Add Complexity and Cost
 – Limit Flexibility
• Plug-and-Play is Desirable for Microgrid
 – Autonomous Inner and Primary Control
 – No/Minimal Secondary and Tertiary Control
Outline

• DC Microgrid Control
• AC Microgrid Control
• Stability, Power Quality, and Control Development
Interconnecting DC Sources

• Voltage Sources can be Connected in Series but not Directly in Parallel
 – Current Sources can be Paralleled but not in Series
• Resistors Required to Limit Circulating Currents
 – Minimal Resistance Required to Avoid Back Feeding
 – Power Losses; not Feasible in Practice

\[
\begin{align*}
I_1 &= V_1/R_1 \\
I_2 &= V_2/R_2 \\
I &= I_1 + I_2
\end{align*}
\]

If \(V_1 > V_2 \)
\[
R_1 > R \left(\frac{V_1}{V_2} - 1 \right)
\]

If \(V_2 > V_1 \)
\[
R_2 > R \left(1 - \frac{V_2}{V_1} \right)
\]
Droop Control

• Current-Dependent Voltage Sources
 – “Virtual” Series Resistors Avoid Power Losses
 – Open-Circuit Voltages can be Matched
 – Select Droop Coefficients Based on Current Sharing Goals
 – Made Possible by Power Electronics

• Applicable to Multiple Voltage Sources

\[V_1 = V_0 - R_1 I_1 \]
\[V_2 = V_0 - R_2 I_2 \]
\[\frac{I_1}{I_2} = \frac{R_2}{R_1} \]

Effects of Parasitic Resistance Ignored
(Output, Line)

Jian Sun 10-17-2014
Master-Slave Control

- One Source Sets the Voltage (Master)
- Other Sources Inject Currents (Slaves)
- Power Sharing not Directly Controlled
- Master and Slave Units are Pre-designated
 - Whole System is Down when the Master is Down
- Similar to Residential Solar Integration into the Grid

\[I = I_1 + I_2 \]

\[V = -IR \]

\[V_0 = \frac{V_1}{R} - I_2 \]

\[R_1 = 0 \]

\[R_1 = \infty \]
Other Variations

- Master May Enter Current Limiting Mode
- Master May Relinquish Voltage Regulation Responsibility by Reducing the Voltage
 - Slave Enters Voltage Regulation Mode When Voltage Drops to Certain Level (Voltage Margin Control)
- HVDC System Control Provides Good Source of Reference
Other Variations – Cont’d

• Renewable Sources can be Treated as Constant-P Sources
 – With Max Voltage and Current Limit
• Battery or Other Controllable Units May be Used as Master
 – Parallel with Supercapacitors to Lower Impedance
 – Automatic Switching between Charging and Discharging Mode
 by Introducing a Voltage Droop

\[v \times i = P \]

\[v_{\text{max}} \]

\[i_{\text{max}} \]
Outline

- DC Microgrid Control
- AC Microgrid Control
- Stability, Power Quality, and Control Development
Master-Slave Control

• Similar to Use in DC Microgrid
• Slaves May Inject Both Active and Reactive Currents
 – Synchronization to Grid Voltage Angle is Required
 – Reactive Current Causes Small Active Power Loss
 • Also Limited by Total Capacity of Interface (Inverter)
 – Reactive Power Control can be Central or Distributed
Droop Control

• Easy to Implement Voltage Magnitude Droop
 – Based on Current Magnitude
 – Unable to Control Active/Reactive Power Sharing
• Matching/Coordinating Phase Angles Requires Central Control

\[\hat{V}_0 \]

\[|i_1| \quad |i_2| \]
Droop Control Operation

- Power is Shared Based by Droop if
 - No Line Impedance is Present
 - Both Open-Circuit Voltages and Phases are Matched
- Complex Droop Coefficients can be Used to Provide Different Sharing of Active and Reactive Power

\[I_1 = \frac{\dot{E}_0 - \dot{V}}{R_1} = \frac{E_0 \cos \delta_0 - V}{R_1} + j \frac{E_0 \sin \delta_0}{R_1} \]

\[I_2 = \frac{\dot{E}_0 - \dot{V}}{R_2} = \frac{E_0 \cos \delta_0 - V}{R_2} + j \frac{E_0 \sin \delta_0}{R_2} \]
Effects of Line Impedance

- Line Impedance Affects Current Sharing
- Impossible to Cancel this Effect Through Droop Design
 - More Complicated in Large Network with Multiple Sources
 - Also Remember the Difficulty of Matching the Voltages
- Possible to Reduce the Effects by Using Large Droop, but will Result in Very Soft (Weak Grid) Behavior

\[
\begin{align*}
\dot{I}_1 &= \frac{\dot{E}_0 - \dot{V}}{R_1 + Z_1} = \frac{E_0 \cos \delta_0 - V}{R_1 + Z_1} + j \frac{E_0 \sin \delta_0}{R_1 + Z_1} \\
\dot{I}_2 &= \frac{\dot{E}_0 - \dot{V}}{R_2} = \frac{E_0 \cos \delta_0 - V}{R_2 + Z_2} + j \frac{E_0 \sin \delta_0}{R_2 + Z_2}
\end{align*}
\]
Pure Inductive Network

\[i = \frac{E \cos \delta - V}{jX} + j \frac{E \sin \delta}{jX} = \frac{E \sin \delta}{X} - j \frac{E \cos \delta - V}{X} \]

\[P = \frac{EV \sin \delta}{X}, \quad Q = \frac{V(V - E \cos \delta)}{X} \]

- With a Small Phase Angle \(\delta \): \(P \approx \frac{EV}{X} \cdot \delta, \quad Q \approx \frac{V}{X} \cdot (V - E) \)
 - Active Power can be Controlled by Varying the Phase \(\delta \)
 - Reactive Power can be Controlled by Varying Voltage \(E \)
- Phase Angle Relative to the Load cannot be Measured
- Frequency can be Measured Locally and \(\delta = \int_0^t \Delta \omega(\tau) d\tau \)

Jian Sun 10-17-2014
Frequency and Voltage Droop

- Frequency Droop to Control Active Power Sharing
- Voltage Droop to Control Reactive Power Sharing
- Droop Characteristic Emulates a Reactance
 - Should be High Compared to Actual Line Reactance
- Cross Coupling Affects Transient Responses
- Integration Introduces Dynamics – Stability Considerations

\[\delta = \int_0^t \Delta \omega(\tau) d\tau \]

\[\omega_i = \omega_0 - m_i (P_0 - P_{0i}) \quad E_i = E_0 - n_i (Q_i - Q_{0i}) \]
Frequency Deviation

- Large P Droop Improves Active Power Sharing Control
 - But Results in Large Δf – Undesirable for Certain Loads
 - Also Increases Coupling with Reactive Power Control
- Secondary Control can be Used to Restore Nominal Frequency after Transient by Adjusting ω_0

\[\omega_i = \omega_0 - m_i (P_0 - P_{0i}) \]

\[P = \frac{EV \sin \delta}{X}, \quad Q = \frac{V(V - E \cos \delta)}{X} \]

\[\delta = \int_0^t \Delta \omega(\tau) d\tau \]
Effects of Line Impedance

• Actual Line Impedance Depends on Distance
 – More Significant for Large Microgrids
• Reactance of the Line Consumes Reactive Power
 – Q in Q-E Droop Curve is Meant for System Reactive Power Sharing but is Measured at the Terminal of Each Unit
• R/X Ratio, Highly Resistive for Distribution Lines
• All of These May Reduce Effectiveness of Droop Control

Various Methods can be Used to Mitigate These Problems but are Usually Sensitive to Actual Line Parameters.
Droop with Dynamics

• Integral Relationship from ω to δ Introduces Dynamics
• Additional Dynamics due to Power Control Loops
• These May Lead to Poor Transients, Oscillatory Responses
• Possible Improvement by Introducing Dynamics into Droop Characteristics
 – Emulate PID Control
• Need Proper System Models for Design
 – Nonlinear Effects of Angle and Voltage; Linearization Required

\[
\delta = -m_p P - m_d \frac{dP}{dt} - m_i \int P \, d\tau
\]

\[
\omega = \omega_0 - m_i P_i - m_p \frac{dP}{dt} - m_d \frac{d^2 P}{dt^2}
\]

\[
E = E_0 - n_p Q - n_d \frac{dQ}{dt}
\]
Virtual Impedance Method

- Instead of P & Q Droop, Each Unit can be Controlled to have Fixed Output Impedance
 - Output P and Q are Controlled by Varying \dot{E}
 - System Frequency can be Kept Constant
 - Limits Current at Initial Connection, Hot Swap Capability
 - Resistive Output Impedance May Improve System Damping
- No Direct Control of System P & Q Balance
Droop vs. Master-Slave Control

• Droop Control Works Well with Defined Power Sharing Objectives
 – Generators, Power Supplies, Parallel Modules

• Master-Slave Control Works for Renewable Sources
 – Slaves Work to Maximize Their Power Output
 – Master has to have Enough Capacity and Speed in Addition to Being Reliable/Controllable

• Various Combinations are Possible
 – Droop Control of Multiple Masters
 – Democratic Master-Slave Control
Outline

• DC Microgrid Control
• AC Microgrid Control
• Stability, Power Quality, and Control Development
Microgrid Stability

- Microgrid is a Weak Grid by Definition
 - Much Easier to Become Unstable than the Large Grid
 - May Actually Degrade Reliability and Power Quality
- Inner Control Designed to be Stable for Assumed (Often Ideal) External Conditions
 - May Become Unstable in an Actual System
- Droop and Master/Slave Control are Meant for Steady-State Power Sharing and Don’t Guarantee Transient Stability
Control and Stability

Frequency (Hertz)

- Prime Mover Control
- Excitation Control
- DC-Link Control
- Grid Synchronization
- Turbine Speed Control
- Grid Q & V Control
- Current Control
- Semiconductor Switching

Primary Control

Inner Control

Jian Sun 10-17-2014
Weak-Grid Problem
Solar Farm
Impedance-Based Analysis

• Each Device is Modeled by an Impedance Element for Small-Signal Analysis
 – Dynamic, Over Entire Frequency Range of Interest

• System Stability is Determined Based on the Impedance Network
 – State-Space Analysis – Overall System Analysis
 – Input-Output Analysis – Individual Unit Stability under the Influence of the System
Master-Slave Control Stability

- Master is Modeled by an Ideal Voltage Source Behind Impedance
- Each Slave is Modeled by an Ideal Current Source in Parallel with an Output Impedance; Individual or Combined

\[
\frac{I_g(s)}{I_i(s)} = \frac{Z_i(s)}{Z_i(s) + Z_g(s)} = \frac{1}{1 + \frac{Z_g(s)}{Z_i(s)}}
\]
Droop Control Stability

- Lumped into a Single Source-Load Model
 - Overall System Stability and Source-Load Interactions
 - Effects of Changes in Sources or Loads on Stability

- System Impedance Network – Matrix Description

- Extension to Other Primary Control Methods
Simulation

• Limitations of Small-Signal Analysis
 – Startup; Shutdown; Operation Mode Transition
 – Abnormal Operation; Interaction with Protections
 – Nonlinear and Time-Varying Behavior

• Detailed Circuit and Control Simulation
 Complements Small-Signal Analysis
 – Possible due to Relatively Small System Size
Real-Time (RT) Simulation

Power Hardware-in-the-Loop (PHIL) Simulation

Control Hardware-in-the-Loop (CHIL) Simulation
HIL Simulation of Microgrids

• Testing of Individual Generation Units
 – Rest of System Simulated in Real-Time
 – Power or Control Interface with Simulator

• System Control Development and Testing
 – Secondary and Tertiary Control
 – Physical System Simulated Along with Local Controls
RT Simulation Platforms

- Simulation Time Steps, PWM Control Accuracy; System (Physical) Size and Complexity

Power Electronics -------------- Power Systems
Simulated Grid with Programmable Volt/Freq/Impedance PV Simulators

Central Inverters (3)

μ Inverters (20)

Utility Grid

Grid Simulator

Electronic Loads

4th Gen Wind Turbine Simulator

PV Simulators
Summary

• Control is to Share Power Among Multiple Sources
• Functionality is Easy, Performance is the Key
• A Microgrid is a Weak Grid by Definition
 – Network Dynamics Affect Inner Control Stability
 – Primary Control Stability is not Guaranteed
• Use of Secondary and Tertiary Control Should be Minimized to Reduce Complexity and Cost, Improve Reliability and Flexibility
• Analysis and Control Design Tools are Available