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Motivation

Big Data in Power Systems

Phasor Measurement Units (PMUs)

PMUs provide synchronized phasor measurements at a sampling rate of
30 or 60 samples per second.
Multi-channel PMUs can measure bus voltage phasors, line current
phasors, and frequency. 2000+ PMUs in the North America.
Data availability and quality issues, e.g., data losses due to
communication congestions.
Limited incorporation into the real-time operations.

Smart Meters

90% of power outages and disturbances are rooted in distribution
networks. SCADA measurements are available only at the substation
level.
Smart meters provide fine-grained measurements of power
consumptions of customers and enhance the distribution system
visibility.
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Motivation

Low Dimensionality of PMU data

Figure: PMUs in Central NY
Power Systems
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Figure: Current magnitudes
of PMU data
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Figure: Singular values of
the PMU data matrix

6 PMUs measure 37 voltage/current phasors. 30 samples/second for
20 seconds.
Singular values decay significantly. Mostly close to zero. Singular
values can be approximated by a sparse vector.
Low-dimensionality also used in Chen, Xie, Kumar 2013, Dahal, King,
Madani 2012 for dimensionality reduction.
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Motivation

Data-driven Approaches by Exploiting Low-Dimensional
Structures

Objective: Develop computationally efficient data-driven methods for
power system situational awareness.

PMU data quality improvement: missing data recovery, bad data
correction, and detection of cyber data attacks.

Data clustering and pattern extraction from privacy-preserving
measurements.

Meng Wang (RPI) 4 / 25



Outline

1 Motivation

2 Data Recovery and Error Correction

3 Pattern Extraction from Privacy-preserving Measurements

4 Conclusions



Data Recovery and Error Correction

PMU Data Quality Issues

Data losses and errors resulting from communication congestions and
device malfunction.
California Independent System Operator reported that 10%-17% of
data in 2011 had availability and quality issues.
Reliable data needed for real-time situational awareness and control.
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Data Recovery and Error Correction

Simultaneous and Consecutive Data Losses

A recorded PMU dataset: consecutive data losses on three phases of line
for an hour.
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Data Recovery and Error Correction

Our Contribution

Our developed data-driven data recovery and error correction methods

Recover/correct data losses/errors including simultaneous and
consecutive data losses/errors.

Differentiate bad data from system events.

No modeling of power system dynamics is needed.

First-order algorithms to solve nonconvex optimization problems with
provable global optimality.

Zhang, Hao, Wang, Chow. IEEE Journal of Selected Topics on Signal Processing, 2018.

Hao, Wang, Chow, Farantatos, Patel, IEEE Transactions on Power Systems, 2018.

Zhang, Wang. IEEE International Symposium on Information Theory, 2018.

Zhang, Wang. under revision with IEEE Transactions on Signal Processing, 2018.
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Data Recovery and Error Correction

Low-rank Hankel Structure of PMU Data

Observation matrix:

Y = [y1, y2, · · · , yn] ∈ Cnc×n

Hankel structure:

Hκ(Y) =


y1 y2 · · · yn−κ+1

y2 y3 · · · yn−κ+2
...

...
. . .

...
yκ yκ+1 · · · yn

 .
Hκ(Y) ∈ Cκnc×(n−κ+1) can still
be approximated by a low-rank
matrix.
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The low-rank Hankel property results from the reduced-order dynamical
system.
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Data Recovery and Error Correction

Low-rank Hankel Structure of PMU Data

Figure: Measurements that contain a disturbance
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Figure: The low-rank approximation
errors to Hκ(Y)
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Figure: The low-rank approximation
errors to Hκ(Y), where Y is a column
permutation of Y.
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Data Recovery and Error Correction

Robust Data Recovery

Let M = Y + S denote the partially corrupted measurements, where S
denotes the sparse errors.
The robust data recovery problem is formulated as

min
X,S∈Cnc×n

‖PΩ(X + S−M)‖2
F

subject to rank(Hκ(X)) = r , ‖S‖0 ≤ s.
(1)
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Data Recovery and Error Correction

Our proposed alternating projection algorithm

Initialization: X0 = 0, thresholding ε0;
Two stages of iterations:

In the k-th outer iteration:

Increase the desired rank k from 1 to r gradually;

In the l-th inner iteration:

Update Sl based on the current estimated thresholding ξl ;
Update Xl along the gradient descent direction PΩ(Xl + Sl −M);
Project the Hankel matrix HκXl into the rank-k matrix set;
Obtain Xl+1 from the matrix after projection;
Update ξl+1 based on Xl+1.
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Data Recovery and Error Correction

Theoretical results

Required number of observations: O(r3 log2(n)), less than the bound
O(nr log2(n)) of recovery with convex relaxation approach;

Fraction of corruptions it can correct: O
(

1
r

)
in each row;

Low computational complexity: O(rncn log n log(1/ε)), in comparison,
a convex alternative takes O(ncn

3/ε)

Recovery guarantees on simultaneous data losses and corruptions
across all channels.

Zhang, Wang. IEEE International Symposium on Information Theory 2018.

Zhang, Wang. To appear in IEEE Transactions on Signal Processing, 2019.
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Data Recovery and Error Correction

Numerical experiments
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Figure: One case of 8% random bad data and 40% random missing data
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Figure: Consecutive bad data, 3% random bad data and 20% missing data

Hao, Wang, et al. IEEE Trans. Power Systems, 2018
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Pattern Extraction from Privacy-preserving Measurements

Privacy Concerns

Smart meter data

Non-intrusive load monitoring approaches can identify individual
appliances from the household total demand [Hart et al., 1992].
User behaviors and habits can be extracted [Lisovich et al., 2010].

The operator clusters customers with similar load patterns to enhance
the load forecasting accuracy, design incentives for demand response,
and identify abnormal user patterns.

Data Access and Privacy Issues Related to Smart Grid Technologies, by Megan Hertzler
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Pattern Extraction from Privacy-preserving Measurements

Tradeoff Between Privacy and Accuracy

Data privacy preserving approaches for smart meter data:

Aggregating the data of co-located customers [Li et al., 2011].
Adding noise to the measurement through signal processing approaches
[Pedro et al., 2014].
Physically adding rechargeable batteries to the households
[Stephen et al., 2011].

Privacy-preserving Measurements ⇒ Inaccurate Information for the
Operator

We can achieve enhanced data privacy, reduced data communication, and
accurate information recovery simultaneously!
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Pattern Extraction from Privacy-preserving Measurements

Our Approach: Simultaneous Achievement of Data Privacy
and Information Accuracy

Quantize the power consumption to
one of a few levels to hide
information using a probability
distribution depending on the actual
power consumption.
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Pattern Extraction from Privacy-preserving Measurements

Our Approach: Simultaneous Achievement of Data Privacy
and Information Accuracy

Question: how can the operator recover the data from the quantized
measurements and cluster them into the right group?

We propose a data recovery and clustering method for the operator.

Our approach provides accurate results with a sufficient number of
measurements.→ The operator has the correct information, but a
cyber intruder with partial measurements does not.

Gao, Wang, Wang, and Chow, IEEE Transactions on Signal Processing, 2018

Wang, Wang, and Xiong, IEEE Journal of Sel. Topics in Signal Process., Special Issue on

Robust Subspace Learning and Tracking: Theory, Algorithms, and Appl., 2018.
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Pattern Extraction from Privacy-preserving Measurements

Problem Formulation

Each subspace has the dimension d . The rank of L∗ is r (r ≤ pd).

E ∗ ∈ Rm×n: At most s nonzero entries.

N ∈ Rm×n: i.i.d. noise with known cdf Φ(z).

‖L∗‖∞ ≤ α1 and ‖E ∗‖∞ ≤ α2 for some constants α1, α2.

Yij = Q(L∗ij + E∗
ij + Nij), ∀(i , j). (2)

Given K -level quantization boundaries ω0 < ω1 < ... < ωK ,

Q(x) = l if ωl−1 < x ≤ ωl , l ∈ [K ]. (3)
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Pattern Extraction from Privacy-preserving Measurements

Problem Formulation

One can check that

Yij = l with probability fl(X
∗
ij ), ∀(i , j), X ∗ij = L∗ij + E ∗ij (4)

where
∑K

l=1 fl(X
∗
ij ) = 1, and

fl(X
∗
ij ) = P(Yij = l |X ∗ij ) = Φ(ωl − X ∗ij )− Φ(ωl−1 − X ∗ij ). (5)

How can we estimate L∗, E ∗, and C ∗ given Y and Φ?

Meng Wang (RPI) 19 / 25



Pattern Extraction from Privacy-preserving Measurements

Proposed Approach

Simultaneously recover and cluster the data by solving a constrained
maximum likelihood problem

We estimate (L∗,E ∗,C ∗) by (L̂, Ê , Ĉ ), where

(L̂, Ê , Ĉ ) = arg min
L,E ,C

−
m∑
i=1

n∑
j=1

K∑
l=1

1[Yij=l ] log(fl(Lij + Eij)),

s.t. (L,E ,C ) ∈ Sf ,

(6)

and the feasible set Sf is defined as

Sf = {(L,E ,C ) : L = LC , rank(L) ≤ r , ‖L‖∞ ≤ α1,

‖E‖∞ ≤ α2, ‖E‖0 ≤ s, ‖ci‖0 ≤ d ,Cii = 0,∀i ∈ [n]}.
(7)

Apply spectral clustering on Ĉ .

Problem (6) is nonconvex due to the nonconvexity of Sf .
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Pattern Extraction from Privacy-preserving Measurements

Recovery and Clustering Results for Multiple Subspaces

Theorem 11: If columns of L̂ belong to p subspaces, each of which
has dimension smaller or equal to d , then

‖(L̂ + Ê )− (L∗ + E∗)‖F√
mn

≤ O(

√
d

m
) and

‖L̂− L∗‖F√
mn

≤ O(

√
d

m
), (8)

Theorem 2: Consider any algorithm that, for any L + E ∈ Sf , takes
Y = L + E + N as the input and returns L̂ + Ê . Then there exists
L + E ∈ Sf such that with probability at least 3

4 ,

‖(L̂ + Ê )− (L∗ + E∗)‖F√
mn

≥ O(

√
d

m
) and

‖L̂− L∗‖F√
mn

≥ O(

√
d

m
), (9)

Theorem 3: The global minimizer Ĉ of (6) has subspace-preserving
property of L̂.

1Wang, Wang, and Xiong, IEEE Journal of Sel. Topics in Signal Process., Special
Issue on Robust Subspace Learning and Tracking: Theory, Algorithms, and Appl., 2018.
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Pattern Extraction from Privacy-preserving Measurements

Simulation on Smart Meter Data

Irish smart meter trial consists more than 5000 residential customers 2. The power
usage was measured in kW in every 30 minutes.

m = 1440 (July 14 - August 12, 2009), n = 1448, r = 150, ‖L∗‖∞ = 6

The entries of the noise matrix N are drawn i.i.d. from N (0, 0.32).

Sparse matrix: E∗ ∈ Rm×n (Nonzero entries have random locations and are
uniformly selected from [−0.5,−6] and [0.5, 6]). Average corruption rate is 5%

Level-K=5: ω0 = −∞, ω1 = 0.25kW, ω2 = 0.5kW, ω3 = 1kW, ω4 = 3kW, and
ω5 =∞
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2Commission for Energy Regulation Smart Metering Project
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Pattern Extraction from Privacy-preserving Measurements

Simulation on Smart Meter Data (Multiple Classes)

Clustering index: Let aj denote the angle of the data point xj
(j ∈ [N]) to the subspace of its own group. Let bj be the minimum
angle of xj to the subspaces of other groups.

sj =
bj − aj

max(aj , bj)
, Index =

1

N

N∑
j=1

sj

Clustering Validation

Use data from August 17 to August
23 in 2009 as validation dataset.
Compare the clustering validation
index under different numbers of
clusters using Sparse Subspace
Clustering (SSC).
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Pattern Extraction from Privacy-preserving Measurements

Simulation on Smart Meter Data (Multiple Classes)

m = 1440 (July 14 - August 12, 2009), n = 4780, d = 50, and k = 4. All other
parameters are set to be the same with one class case.

Mean daily profiles are obtained by first normalizing data (‖Li‖2 = 1), and then
averaging in the same group.
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Sparse-APA on quantized data -- 15% missing data
Applying SSC on actual data

Mean daily profiles by (a) using our method with no missing data (b) using our method with

15% missing data (c) applying SSC on actual data

Quantized
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inal data
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covered data
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tized data

Random
selection

Clustering Index 0.082 0.085 0.073 0.06 0.051
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Conclusions

Conclusions

A framework of power system data analytics by exploiting the
low-dimensional structure of spatial-temporal data blocks.

Data quality improvement with analytical guarantees. (Missing data
recovery, detection of cyber data attacks.)

A new approach to enhance the data privacy and reduce the
communication burden without too much information loss.

Other work: real-time event identification approach using a small
number of recorded single events for training.

Meng Wang (RPI) 25 / 25



Q & A

Meng Wang (RPI) 26 / 25



References

Candes, Emmanuel, Benjamin Recht (2012)

Exact Matrix Completion via Convex Optimization

Communications of the ACM, 111 – 119.

Fazel M (2002)

Matrix Rank Minimization with Applications

PhD thesis, Stanford University

Mateos G, Giannakis G B (2013)

Load Curve Data Cleansing and Imputation via Sparsity and Low Rank

IEEE Transactions on Smart Grid, 2347 – 2355.

Kekatos V, Zhang Y, Giannakis G B (2014)

Electricity Market Forecasting via Low-rank Multi-kernel Learning

IEEE Journal of Selected Topics in Signal Processing, 1182 – 1193.

Liu Y, Ning P, Reiter M K (2011)

False Data Injection Attacks Against State Estimation in Electric Power Grids

ACM Transactions on Information and System Security (TISSEC), 13.

Meng Wang (RPI) 27 / 25



References

Xie L, Mo Y, Sinopoli B (2010)

False Data Injection Attacks in Electricity Markets

Smart Grid Communications (SmartGridComm), 2010 First IEEE International
Conference on, 226 – 231.

Kosut O, Jia L, Thomas R J, et al (2010)

Malicious Data Attacks on Smart Grid State Estimation: Attack Strategies and
Countermeasures

Smart Grid Communications (SmartGridComm), 2010 First IEEE International
Conference on, 220 – 225.

Sedghi H, Jonckheere E (2013)

Statistical Structure Learning of Smart Grid for Detection of False Data Injection

Power and Energy Society General Meeting (PES), 1 – 5.

Liu L, Esmalifalak M, Ding Q, et al (2014)

Detecting False Data Injection Attacks on Power Grid by Sparse Optimization

IEEE Transactions on Smart Grid, 612 – 621.

Davenport M A, Plan Y, van den Berg E, et al (2014)

1-Bit Matrix Completion

Information and Inference, 189 – 223.Meng Wang (RPI) 28 / 25



References

Pengzhi Gao, Ren Wang, Meng Wang, and Joe H. Chow (2016)

Low-rank Matrix Recovery from Quantized and Erroneous Measurements:
Accuracy-preserved Data Privatization in Power Grids

Asilomar Conference on Signals, Systems and Computers, 374 – 378.

Pengzhi Gao, Meng Wang, Scott G. Ghiocel, Joe H. Chow, Bruce Fardanesh, and
George Stefopoulos (2016)

Missing Data Recovery by Exploiting Low-dimensionality in Power System
Synchrophasor Measurements

IEEE Trans. Power Systems 31(2), 1006 – 1013.

Pengzhi Gao, Meng Wang, Joe H. Chow, Scott G. Ghiocel, Bruce Fardanesh,
George Stefopoulos, and Michael P. Razanousky (2016)

Identification of Successive “Unobservable” Cyber Data Attacks in Power Systems

IEEE Trans. Signal Processing 64(21), 5557 – 5570.

Meng Wang (RPI) 29 / 25



References

Le Xie, Yang Chen, and P. R. Kumar (2014)

Dimensionality Reduction of Synchrophasor Data for Early Event Detection:
Linearized Analysis

IEEE Trans. Power Systems 29(6), 2784 – 2794.

Mark A. Davenport, Yaniv Plan, Ewout van den Berg, and Mary Wootters (2014)

1-bit Matrix Completion

Information and Inference 3(3), 189 – 223.

Sonia A. Bhaskar (2016)

Probabilistic Low-Rank Matrix Completion from Quantized Measurements

Journal of Machine Learning Research 17(60), 1 – 34.

Akshay Soni, Swayambhoo Jain, Jarvis Haupt, and Stefano Gonella (2016)

Noisy Matrix Completion under Sparse Factor Models

IEEE Trans. Information Theory 62(6), 3636 – 3661.

Meng Wang (RPI) 30 / 25



References

Tony Cai, and Wen-Xin Zhou (2013)

A Max-Norm Constrained Minimization Approach to 1-Bit Matrix Completion

Journal of Machine Learning Research 14(1), 3619 – 3647.

Olga Klopp, Jean Lafond, Eric Moulines, and Joseph Salmon (2015)

Adaptive Multinomial Matrix Completion

Electronic Journal of Statistics 9(2), 2950 – 2975.

Andrew S. Lan, Christoph Studer, and Richard G. Baraniuk (2014)

Matrix Recovery from Quantized and Corrupted Measurements

IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 4973 – 4977.

Pengzhi Gao, Meng Wang, Joe H. Chow, Scott G. Ghiocel, Bruce Fardanesh,
George Stefopoulos, and Michael P. Razanousky (2016)

Identification of Successive “Unobservable” Cyber Data Attacks in Power Systems.

IEEE Transactions on Signal Processing, 64 (21): 5557-5570.

Meng Wang (RPI) 31 / 25



References

H. Farhangi (2010)

The Path of the Smart Grid

IEEE Power and Energy Magazine, 8(1), 18 – 28.

Quilumba Franklin L., Lee Wei-Jen, Huang Heng, Wang David Y., and Szabados
Robert L. (2015)

Using Smart Meter Data to Improve the Accuracy of Intraday Load Forecasting
Considering Customer Behavior Similarities

IEEE Transactions on Smart Grid, 6(2), 911 – 918.

S. Haben, C. Singleton, and P. Grindrod (2016)

Analysis and Clustering of Residential Customers Energy Behavioral Demand Using
Smart Meter Data

IEEE Transactions on Smart Grid, 7(1), 136 – 144.

G. W. Hart (1992)

Nonintrusive appliance load monitoring

Proceedings of the IEEE, 80(12), 1870 – 1891.

Meng Wang (RPI) 32 / 25



References

M. A. Lisovich, D. K. Mulligan, and S. B. Wicker (2010)

Inferring Personal Information from Demand-Response Systems

IEEE Security Privacy, 8(1), 11 – 20.

Li Fengjun, Luo Bo, and Liu Peng (2011)

Secure and Privacy-Preserving Information Aggregation for Smart Grids

International Journal of Security and Networks, 6(1), 28 – 39.

Barbosa Pedro, Brito Andrey, Almeida Hyggo, and Clau Sebastian (2014)

Lightweight Privacy for Smart Metering Data by Adding Noise

Proceedings of the 29th Annual ACM Symposium on Applied Computing, SAC ’14,
531 – 538.

McLaughlin Stephen, McDaniel Patrick, and Aiello William (2011)

Protecting Consumer Privacy from Electric Load Monitoring

Proceedings of the 18th ACM Conference on Computer and Communications
Security, 12, 87 – 98.

Meng Wang (RPI) 33 / 25



References

N. Mahmoudi-Kohan, M. Parsa Moghaddam, M.K. Sheikh-El-Eslami, and E.
Shayesteh (2010)

A Three-Stage Strategy for Optimal Price Offering by a Retailer Based on
Clustering Techniques

International Journal of Electrical Power & Energy Systems, 32(10), 1135 – 1142.

C. Leon, F. Biscarri, I. Monedero, J. I. Guerrero, J. Biscarri, and R. Millan (2011)

Variability and Trend-Based Generalized Rule Induction Model to NTL Detection in
Power Companies

IEEE Transactions on Power Systems, 26(4), 1798 – 1807.

Figueiredo Vera, Rodrigues Fatima, Vale Zita, and Gouveia Joaquim Borges (2005)

An Electric Energy Consumer Characterization Framework Based on Data Mining
Techniques

IEEE Transactions on Power Systems, 20(2), 596 – 602.

Saeed Aghabozorgi, Seyed Shirkhorshidi Ali, and Ying Wah Teh (2015)

Time-Series Clustering–A Decade Review

Information Systems, 53, 16 – 38.

Meng Wang (RPI) 34 / 25



References

Piao, Minghao and et al (2014)

Subspace Projection Method Based Clustering Analysis in Load Profiling

IEEE Transactions on Power Systems, 29(6), 2628 – 2635.

Chen Yi, Nasrabadi Nasser M, and Tran Trac D (2011)

Hyperspectral Image Classification Using Dictionary-Based Sparse Representation

IEEE Transactions on Geoscience and Remote Sensing, 49(10), 3973 – 3985.

Pengzhi Gao, Meng Wang, Joe H. Chow, Matthew Berger, and Lee M. Seversky
(2017)

Missing Data Recovery for High-dimensional Signals with Nonlinear
Low-dimensional Structures

IEEE Transactions on Signal Processing, 65(20), 5421 – 5436.

Sonia A. Bhaskar (2016)

Probabilistic Low-Rank Matrix Completion from Quantized Measurements

Journal of Machine Learning Research 17(60), 1 – 34.

Meng Wang (RPI) 35 / 25



References

Ng Andrew, Jordan Michael, and Weiss Yair (2002)

On Spectral Clustering: Analysis and an Algorithm

Advances in neural information processing systems, 2, 849 – 856.

Elhamifar Ehsan, and Vidal Rene (2013)

Sparse Subspace Clustering: Algorithm, Theory, and Applications

IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(11), 2765 –
2781.

Liu Guangcan, Lin Zhouchen, Yan Shuicheng, Sun Ju, Yu Yong, and Ma Yi (2013)

Robust Recovery of Subspace Structures by Low-Rank Representation

IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1), 171 – 184.

Rahmani Mostafa, and George K. Atia (2017)

Innovation Pursuit: A New Approach to Subspace Clustering

IEEE Transactions on Signal Processing, 65(23), 6276 – 6291.

Meng Wang (RPI) 36 / 25



References

Tseng Paul (2000)

Nearest Q-Flat to m Points

Journal of Optimization Theory and Applications 105(1), 249 – 252.

Pengzhi Gao, Ren Wang, Meng Wang, and Joe H. Chow (2018)

Low-rank Matrix Recovery from Noisy, Quantized and Erroneous Measurements

IEEE Transactions on Signal Processing, 60(11), 2918 – 2932.

Andrew S. Lan, Christoph Studer, and Richard G. Baraniuk (2014)

Matrix Recovery from Quantized and Corrupted Measurements

IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 4973 – 4977.

Mark A. Davenport, Yaniv Plan, Ewout van den Berg, and Mary Wootters (2014)

1-bit Matrix Completion

Information and Inference 3(3), 189 – 223.

Meng Wang (RPI) 37 / 25


	Motivation
	Data Recovery and Error Correction
	Pattern Extraction from Privacy-preserving Measurements
	Conclusions
	Appendix

