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Microgrid 1s not New

» Early Power Systems Developed by Thomas

29

Edison and Nikola Tesla were all “Microgrids

» Large Power Grids Emerged Because of

Improved Reliability, Better Generation-Load
Balance, and More Stable Voltage &

Frequency
* AC Took Over DC due to Easy Conversion
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Why Microgrids Again

e New Drivers

— Utilization of Distributed Generation
« Renewable Energy, CHP, Energy Storage
 Reduce Transmission and Distribution Cost & Losses

— Improve Grid Resiliency and Power Quality
— Expansion of Electrification

 New Enabling Technologies
— Power Electronics, Communication, Control

— Cost-Effective and Efficient Energy Storage
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Microgrid Technology

* Many Conferences, Workshops & Seminars about
Microgrid Deployment, Benefits & Market

» Technical Materials have been Limited to
Specific Techniques for “Specialists™

* Lack of Basic Understanding Often Leads to
Hypes, False Claims/Expectations, and Mysteries

* Functionality 1s Easy; Performance 1s the Key

— Promise Performance, Deliver Functionality
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This Webinar

* Covers the Fundamentals of Microgrid
— Technology, with a Focus on Control
— Performance, with a Focus on Power Quality

» Targets Audience with General EE Background

* Goals
— Users: Ask the Right Questions
— Design Engineers: Know Where to Start

— Research Engineers: Understand Technical Challenges
and Opportunities for Innovation
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Power Sharing

* Microgrid Control 1s about Sharing Power Among
Multiple Sources While Maintaining Stability
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Control Hierarchies
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General Considerations

* Inner and Primary Control are Local

* Secondary and Tertiary Control are Central
— Require Communications
— Add Complexity and Cost
— Limat Flexibility
* Plug-and-Play 1s Desirable for Microgrid
— Autonomous Inner and Primary Control

— No/Minimal Secondary and Tertiary Control
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Outline

* DC Microgrid Control
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Interconnecting DC Sources

* Voltage Sources can be Connected 1n Series but not
Directly in Parallel
— Current Sources can be Paralleled but not in Series
» Resistors Required to Limit Circulating Currents

— Minimal Resistance Required to Avoid Back Feeding
— Power Losses; not Feasible in Practice
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Droop Control

* Current-Dependent Voltage Sources
— “Virtual” Series Resistors Avoid Power Losses
— Open-Circuit Voltages can be Matched
— Select Droop Coefficients Based on Current Sharing Goals
— Made Possible by Power Electronics
« Applicable to Multiple Voltage Sources V. =V, -R/,
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Master-Slave Control

* One Source Sets the Voltage (Master)
* Other Sources Inject Currents (Slaves)
* Power Sharing not Directly Controlled

e Master and Slave Units are Pre-designated
— Whole System 1s Down when the Master is Down

e Similar to Residential Solar Integration into the Grid
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Other Variations

* Master May Enter Current Limiting Mode

* Master May Relinquish Voltage Regulation Responsibility
by Reducing the Voltage
— Slave Enters Voltage Regulation Mode When Voltage Drops to

Certain Level (Voltage Margin Control)
HVDC System Control Provides Good Source of Reference
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Other Variations — Cont’d

« Renewable Sources can be Treated as Constant-P Sources
— With Max Voltage and Current Limit

« Battery or Other Controllable Units May be Used as Master
— Parallel with Supercapacitors to Lower Impedance

— Automatic Switching between Charging and Discharging Mode
by Introducing a Voltage Droop
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Outline

* AC Microgrid Control
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Master-Slave Control

* Similar to Use in DC Microgrid

» Slaves May Inject Both Active and Reactive Currents
— Synchronization to Grid Voltage Angle 1s Required

— Reactive Current Causes Small Active Power Loss
» Also Limited by Total Capacity of Interface (Inverter)

— Reactive Power Control can be Central or Distributed
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Droop Control

* Easy to Implement Voltage Magnitude Droop
— Based on Current Magnitude
— Unable to Control Active/Reactive Power Sharing

* Matching/Coordinating Phase Angles Requires

Central Control ; IA v
Vo
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Droop Control Operation

* Power 1s Shared Based by Droop 1f
— No Line Impedance is Present
— Both Open-Circuit Voltages and Phases are Matched

* Complex Droop Coefficients can be Used to Provide

Different Sharing of Active and Reactive Power
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Effects of Line Impedance

* Line Impedance Affects Current Sharing

* Impossible to Cancel this Effect Through Droop Design
— More Complicated in Large Network with Multiple Sources
— Also Remember the Difficulty of Matching the Voltages

» Possible to Reduce the Effects by Using Large Droop,
but will Result in Very Soft (Weak Grid) Behavior

Z SN .
) . [ E,-V _ E,cosd, -V 4] E,sind,
R, R, +Z, R, +Z, R, +Z,
~)E, L E, -V _ Eycos6, -V L E,sino,

l J
R, R,+Z, R,+2Z,

ri’@ RBI]SSBIHET Jian Sun 10-17-2014 19



Pure Inductive Network
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— Active Power can be Controlled by Varying the Phase (0)
— Reactive Power can be Controlled by Varying Voltage (E)

* Phase Angle Relative to the Load cannot be Measured

* Frequency can be Measured Locally and §= j; Ao(t)dt

ri’@ RBI]SSBIHET Jian Sun 10-17-2014 20



Frequency and Voltage Droop

* Frequency Droop to Control Active Power Sharing
* Voltage Droop to Control Reactive Power Sharing

* Droop Characteristic Emulates a Reactance
— Should be High Compared to Actual Line Reactance

* Cross Coupling Affects Transient Responses
 Integration Introduces Dynamics — Stability Considerations
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Frequency Deviation

* Large P Droop Improves Active Power Sharing Control
— But Results in Large Af — Undesirable for Certain Loads

— Also Increases Coupling with Reactive Power Control

* Secondary Control can be Used to Restore Nominal

Frequency after Transient by Adjusting o,
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Effects of Line Impedance

— More Significant for Large Microgrids

Actual Line Impedance Depends on Distance

 Reactance of the Line Consumes Reactive Power

— Q in Q-E Droop Curve is Meant for System Reactive Power
Sharing but is Measured at the Terminal of Each Unit
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Z: Line Impedance

o X: Emulated Reactance

ri’@ RBI]SSBIHET Jian Sun 10-17-2014

R/X Ratio, Highly Resistive for Distribution Lines
All of These May Reduce Effectiveness of Droop Control

Various Methods can be
Used to Mitigate These
Problems but are Usually
Sensitive to Actual Line
Parameters.
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Droop with Dynamics

* Integral Relationship from  to o Introduces Dynamics
« Additional Dynamics due to Power Control Loops
 These May Lead to Poor Transients, Oscillatory Responses

* Possible Improvement by Introducing Dynamics into Droop

Characteristics
— Emulate PID Control

* Need Proper System Models for Design

— Nonlinear Effects of Angle and Voltage; Linearization Required
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Virtual Impedance Method

 Instead of P & Q Droop, Each Unit can be Controlled to
have Fixed Output Impedance
— Output P and Q are Controlled by Varying E
— System Frequency can be Kept Constant
— Limits Current at Initial Connection, Hot Swap Capability
— Resistive Output Impedance May Improve System Damping

* No Direct Control of System P & Q Balance
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Droop vs. Master-Slave Control

* Droop Control Works Well with Defined Power
Sharing Objectives

— Generators, Power Supplies, Parallel Modules
« Master-Slave Control Works for Renewable Sources

— Slaves Work to Maximize Their Power Output

— Master has to have Enough Capacity and Speed in Addition
to Being Reliable/Controllable

 Various Combinations are Possible
— Droop Control of Multiple Maters
— Democratic Mater-Slave Control
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Outline

 Stability, Power Quality, and Control

Development
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Microgrid Stability

* Microgrid 1s a Weak Grid by Definition
— Much Easier to Become Unstable than the Large Grid
— May Actually Degrade Reliability and Power Quality

* Inner Control Designed to be Stable for Assumed
(Often Ideal) External Conditions
— May Become Unstable in an Actual System

* Droop and Master/Slave Control are Meant for
Steady-State Power Sharing and Don’t Guarantee
Transient Stability
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Control and Stability
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Weak-Grid Problem
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Solar Farm
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Impedance-Based Analysis

« Each Device 1s Modeled by an Impedance
Element for Small-Signal Analysis
— Dynamic, Over Entire Frequency Range of Interest
* System Stability 1s Determined Based on the
an Impedance Network

— State-Space Analysis — Overall System Analysis

— Input-Output Analysis — Individual Unit Stability
under the Influence of the System
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Master-Slave Control Stability

—

Master/Grid

Small-Signal Model
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e Master 1s Modeled by an Ideal Voltage Source Behind Impedance

« Each Slave is Modeled by an Ideal Current Source in Parallel with an
Output Impedance; Individual or Combined
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Droop Control Stability

* Lumped into a Single Source-Load Model
— Overall System Stability and Source-Load Interactions
— Effects of Changes 1n Sources or Loads on Stability

* System Impedance Network — Matrix Description
» Extension to Other Primary Control Methods
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Simulation

* Limitations of Small-Signal Analysis

— Startup; Shutdown; Operation Mode Transition
— Abnormal Operation; Interaction with Protections

— Nonlinear and Time-Varying Behavior

e Detailed Circuit and Control Simulation

Complements Small-Signal Analysis
— Possible due to Relatively Small System Size
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Real-Time (RT) Simulation
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HIL Simulation of Microgrids

* Testing of Individual Generation Units
— Rest of System Simulated in Real-Time
— Power or Control Interface with Simulator
* System Control Development and Testing

— Secondary and Tertiary Control
— Physical System Simulated Along with Local Controls
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RT Simulation Platforms

* Simulation Time Steps, PWM Control Accuracy;
System (Physical) Size and Complexity

Power Electronics ------------ Power Systems
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Summary

* Control 1s to Share Power Among Multiple Sources

* Functionality 1s Easy, Performance 1s the Key

* A Microgrid 1s a Weak Grid by Definition

— Network Dynamics Affect Inner Control Stability
— Primary Control Stability 1s not Guaranteed

* Use of Secondary and Tertiary Control Should be
Minimized to Reduce Complexity and Cost, Improve
Reliability and Flexibility

* Analysis and Control Design Tools are Available
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