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Microgrid is not New
• Early Power Systems Developed by Thomas 

Edison and Nikola Tesla were all “Microgrids”
• Large Power Grids Emerged Because of 

Improved Reliability, Better Generation-Load 
Balance, and More Stable Voltage & 
Frequency

• AC Took Over DC due to Easy Conversion
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Why Microgrids Again
• New Drivers

– Utilization of Distributed Generation
• Renewable Energy, CHP, Energy Storage
• Reduce Transmission and Distribution Cost & Losses

– Improve Grid Resiliency and Power Quality
– Expansion of Electrification

• New Enabling Technologies
– Power Electronics, Communication, Control
– Cost-Effective and Efficient Energy Storage
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Microgrid Technology
• Many Conferences, Workshops & Seminars about 

Microgrid Deployment, Benefits & Market
• Technical Materials have been Limited to 

Specific Techniques for “Specialists”
• Lack of Basic Understanding Often Leads to 

Hypes, False Claims/Expectations, and Mysteries
• Functionality is Easy; Performance is the Key

– Promise Performance, Deliver Functionality
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This Webinar
• Covers the Fundamentals of Microgrid

– Technology, with a Focus on Control
– Performance, with a Focus on Power Quality

• Targets Audience with General EE Background
• Goals

– Users: Ask the Right Questions
– Design Engineers: Know Where to Start
– Research Engineers: Understand Technical Challenges 

and Opportunities for Innovation
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Power Sharing
• Microgrid Control is about Sharing Power Among 

Multiple Sources While Maintaining Stability
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Control Hierarchies
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General Considerations
• Inner and Primary Control are Local
• Secondary and Tertiary Control are Central

– Require Communications
– Add Complexity and Cost
– Limit Flexibility

• Plug-and-Play is Desirable for Microgrid
– Autonomous Inner and Primary Control
– No/Minimal Secondary and Tertiary Control
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Outline
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• DC Microgrid Control
• AC Microgrid Control
• Stability, Power Quality, and Control 

Development
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Interconnecting DC Sources
• Voltage Sources can be Connected in Series but not 

Directly in Parallel
– Current Sources can be Paralleled but not in Series

• Resistors Required to Limit Circulating Currents
– Minimal Resistance Required to Avoid Back Feeding
– Power Losses; not Feasible in Practice
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Droop Control
• Current-Dependent Voltage Sources

– “Virtual” Series Resistors Avoid Power Losses
– Open-Circuit Voltages can be Matched
– Select Droop Coefficients Based on Current Sharing Goals
– Made Possible by Power Electronics

• Applicable to Multiple Voltage Sources
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Master-Slave Control
• One Source Sets the Voltage (Master)
• Other Sources Inject Currents (Slaves)
• Power Sharing not Directly Controlled
• Master and Slave Units are Pre-designated

– Whole System is Down when the Master is Down
• Similar to Residential Solar Integration into the Grid
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Other Variations
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• Master May Enter Current Limiting Mode
• Master May Relinquish Voltage Regulation Responsibility 

by Reducing the Voltage
– Slave Enters Voltage Regulation Mode When Voltage Drops to 
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Other Variations – Cont’d
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• Renewable Sources can be Treated as Constant-P Sources
– With Max Voltage and Current Limit

• Battery or Other Controllable Units May be Used as Master
– Parallel with Supercapacitors to Lower Impedance
– Automatic Switching between Charging and Discharging Mode 

by Introducing a Voltage Droop
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Outline
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• DC Microgrid Control
• AC Microgrid Control
• Stability, Power Quality, and Control 

Development
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Master-Slave Control
• Similar to Use in DC Microgrid
• Slaves May Inject Both Active and Reactive Currents

– Synchronization to Grid Voltage Angle is Required
– Reactive Current Causes Small Active Power Loss

• Also Limited by Total Capacity of Interface (Inverter)
– Reactive Power Control can be Central or Distributed
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Droop Control
• Easy to Implement Voltage Magnitude Droop

– Based on Current Magnitude
– Unable to Control Active/Reactive Power Sharing

• Matching/Coordinating Phase Angles Requires 
Central Control
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Droop Control Operation
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• Power is Shared Based by Droop if
– No Line Impedance is Present
– Both Open-Circuit Voltages and Phases are Matched

• Complex Droop Coefficients can be Used to Provide 
Different Sharing of Active and Reactive Power
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Effects of Line Impedance
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• Line Impedance Affects Current Sharing
• Impossible to Cancel this Effect Through Droop Design

– More Complicated in Large Network with Multiple Sources
– Also Remember the Difficulty of Matching the Voltages

• Possible to Reduce the Effects by Using Large Droop, 
but will Result in Very Soft (Weak Grid) Behavior
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Pure Inductive Network

• With a Small Phase Angle :

– Active Power can be Controlled by Varying the Phase ()
– Reactive Power can be Controlled by Varying Voltage (E)

• Phase Angle Relative to the Load cannot be Measured

• Frequency can be Measured Locally and
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Frequency and Voltage Droop
• Frequency Droop to Control Active Power Sharing
• Voltage Droop to Control Reactive Power Sharing
• Droop Characteristic Emulates a Reactance

– Should be High Compared to Actual Line Reactance
• Cross Coupling Affects Transient Responses
• Integration Introduces Dynamics – Stability Considerations
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Frequency Deviation
• Large P Droop Improves Active Power Sharing Control

– But Results in Large f – Undesirable for Certain Loads
– Also Increases Coupling with Reactive Power Control

• Secondary Control can be Used to Restore Nominal 
Frequency after Transient by Adjusting 0
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Effects of Line Impedance
• Actual Line Impedance Depends on Distance

– More Significant for Large Microgrids
• Reactance of the Line Consumes Reactive Power 

– Q in Q-E Droop Curve is Meant for System Reactive Power 
Sharing but is Measured at the Terminal of Each Unit

• R/X Ratio, Highly Resistive for Distribution Lines
• All of These May Reduce Effectiveness of Droop Control
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Droop with Dynamics
• Integral Relationship from  to  Introduces Dynamics 
• Additional Dynamics due to Power Control Loops
• These May Lead to Poor Transients, Oscillatory  Responses
• Possible Improvement by Introducing Dynamics into Droop 

Characteristics
– Emulate PID Control

• Need Proper System Models for Design
– Nonlinear Effects of Angle and Voltage; Linearization Required

Jian Sun 10-17-2014

2

2

0ωω
dt

Pdm
dt
dPmPm dpii 

dt
dQnQnEE dp  0

 Pdm
dt
dPmPm idpδ



25

Virtual Impedance Method
• Instead of P & Q Droop, Each Unit can be Controlled to 

have Fixed Output Impedance
– Output P and Q are Controlled by Varying
– System Frequency can be Kept Constant
– Limits Current at Initial Connection, Hot Swap Capability
– Resistive Output Impedance May Improve System Damping

• No Direct Control of System P & Q Balance
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Droop vs. Master-Slave Control
• Droop Control Works Well with Defined Power 

Sharing Objectives
– Generators, Power Supplies, Parallel Modules

• Master-Slave Control Works for Renewable Sources
– Slaves Work to Maximize Their Power Output
– Master has to have Enough Capacity and Speed in Addition 

to Being Reliable/Controllable
• Various Combinations are Possible

– Droop Control of Multiple Maters
– Democratic Mater-Slave Control
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Outline
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• DC Microgrid Control
• AC Microgrid Control
• Stability, Power Quality, and Control 

Development
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Microgrid Stability
• Microgrid is a Weak Grid by Definition

– Much Easier to Become Unstable than the Large Grid
– May Actually Degrade Reliability and Power Quality

• Inner Control Designed to be Stable for Assumed 
(Often Ideal) External Conditions
– May Become Unstable in an Actual System

• Droop and Master/Slave Control are Meant for 
Steady-State Power Sharing and Don’t Guarantee 
Transient Stability
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Control and Stability 
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Weak-Grid Problem
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Solar Farm
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Impedance-Based Analysis
• Each Device is Modeled by an Impedance 

Element for Small-Signal Analysis
– Dynamic, Over Entire Frequency Range of Interest

• System Stability is Determined Based on the 
an Impedance Network
– State-Space Analysis – Overall System Analysis
– Input-Output Analysis – Individual Unit Stability 

under the Influence of the System
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Master-Slave Control Stability
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Droop Control Stability
• Lumped into a Single Source-Load Model

– Overall System Stability and Source-Load Interactions
– Effects of Changes in Sources or Loads on Stability

• System Impedance Network – Matrix Description
• Extension to Other Primary Control Methods
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Simulation
• Limitations of Small-Signal Analysis

– Startup; Shutdown; Operation Mode Transition
– Abnormal Operation; Interaction with Protections
– Nonlinear and Time-Varying Behavior

• Detailed Circuit and Control Simulation 
Complements Small-Signal Analysis
– Possible due to Relatively Small System Size 
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Real-Time (RT) Simulation
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Control Hardware-in-the-Loop 
(CHIL) Simulation

Power Hardware-in-the-Loop 
(PHIL) Simulation
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HIL Simulation of Microgrids
• Testing of Individual Generation Units

– Rest of System Simulated in Real-Time
– Power or Control Interface with Simulator

• System Control Development and Testing
– Secondary and Tertiary Control
– Physical System Simulated Along with Local Controls

Jian Sun 10-17-2014
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RT Simulation Platforms
• Simulation Time Steps, PWM Control Accuracy; 

System (Physical) Size and Complexity

Typhoon HIL

Power Electronics                                Power Systems
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Summary
• Control is to Share Power Among Multiple Sources
• Functionality is Easy, Performance is the Key
• A Microgrid is a Weak Grid by Definition

– Network Dynamics Affect Inner Control Stability
– Primary Control Stability is not Guaranteed

• Use of Secondary and Tertiary Control Should be 
Minimized to Reduce Complexity and Cost, Improve 
Reliability and Flexibility

• Analysis and Control Design Tools are Available
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